Муниципальное бюджетное общеобразовательное учреждение «Гимназия №19» г. Калуги

РАССМОТРЕНО и ПРИНЯТО

Педагогическим советом протокол №1 от 30 августа 2018 года

СОГЛАСОВАНО

заместитель директора по УВР М.К.Ракова 31 августа 2018 года

РАБОЧАЯ ПРОГРАММА

ПО

математике 10-11 классы (базовый уровень)

Срок реализации: 2года

Разработчик

Гагарочкина Алла Константиновна, учитель математики, первая квалификационная категория

Приложение №1 к ООП СОО Утверждено приказом №110-2/01.11 от 31.08.2018г. по МБОУ «Гимназия №19» г. Калуги

Согласно действующему в гимназии учебному плану на 2018/19-2019/20 уч.гг. на изучение математики на базовом уровне в 10-11 классах отводится 276часов:

10 класс (140 часо) - 4часа в неделю, 35 учебных недель;

11 класс (136 часов) - 4 часа в неделю, 34 учебных недели.

Планируемые результаты освоения обучающимися основной образовательной программы среднего общего образования

Планируемые ЛИЧНОСТНЫЕ результаты освоения «Математики»

Личностные результаты в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
 - неприятие вредных привычек: курения, употребления алкоголя, наркотиков.

Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):

- российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историкокультурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
- формирование уважения к русскому языку как государственному языку
 Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения;
- воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:

- гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни;
- признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность;
- мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- интериоризация ценностей демократии и социальной солидарности,
 готовность к договорному регулированию отношений в группе или социальной организации;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
- приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному дост
 - оинству людей, их чувствам, религиозным убеждениям;
- готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям.

Личностные результаты в сфере отношений обучающихся с окружающими люльми:

- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;
- формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);

– развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:

- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта экологонаправленной деятельности;
- эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни:

- ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;
- положительный образ семьи, родительства (отцовства и материнства), интериоризация традиционных семейных ценностей.

Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений:

- уважение ко всем формам собственности, готовность к защите своей собственности,
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
- готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:

– физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.

Планируемые Метапредметные результаты освоения ООП

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели:
- сопоставлять полученный результат деятельности с поставленной заранее целью.

Познавательные универсальные учебные действия

Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;

менять и удерживать разные позиции в познавательной деятельности.

Коммуникативные универсальные учебные действия

Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Планируемые **предметные** результаты освоения «Математики»

	Базовый уровень	
	«Системно-теоретические результаты»	
Раздел	II. Выпускник научится	IV. Выпускник получит
		возможность научиться
Цели освоения	Ученик получит представление о	Построению и исследованию
предмета	математике как универсальном языке	математических моделей для
	науки, средстве моделирования	описания и решения прикладных
	явлений и процессов, об идеях и	задач, задач из смежных дисциплин;
	методах математики.	выполнению и самостоятельному
		составлению алгоритмических
		предписаний и инструкций на
		математическом материале;
		выполнению расчетов практического
		характера; использованию
		математических формул и
		самостоятельному составлению
		формул на основе обобщения частных
		случаев и эксперимента;
		самостоятельной работы с
		источниками информации,
		обобщения и систематизации
		полученной информации,
		интегрирования ее в личный опыт;
		проведения доказательных
		рассуждений, логического
		обоснования выводов, различения
		доказанных и недоказанных
		утверждений, аргументированных и
		эмоционально убедительных
		суждений;
		самостоятельной и коллективной
		деятельности, включения своих
		результатов в результаты работы

группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Числа и выражения

Оперировать понятиями: натуральное и целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, иррациональное число, приближенное значение числа, часть, доля, отношение, процент, масштаб; оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера углов, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и пи; выполнять арифметические действия с целыми и рациональными числами, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства; сравнивать рациональные числа между собой; сравнивать с рациональными числами значения целых степеней, корней натуральной степени из чисел, логарифмов чисел в простых случаях; выполнять несложные преобразования числовых выражений, содержащих степени чисел, корни из чисел, логарифмы чисел; пользоваться оценкой и прикидкой при практических расчетах; изображать точками на координатной прямой целые и рациональные числа, целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях; выполнять несложные преобразования целых и дробнорациональных буквенных выражений, выражать в простейших случаях из равенства одну переменную через другие; вычислять в простейших случаях значения числовых и буквенных выражений, ос уществляя необходимые подстановки и преобразования; изображать схематически угол, величина которого выражена в градусах или радианах; оценивать знаки синуса,

Достижение результатов раздела II; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические формулы; находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования; использовать при решении задач табличные значения тригонометрических функций углов; выполнять перевод величины угла из радианной меры в градусную и обратно.

косинуса, тангенса конкретных углов. В повседневной жизни и при изучении других предметов: Выполнять действия с числовыми выполнять действия с числовыми данными при решении задач из данными при решении задач различных областей знаний; практического характера, используя оценивать, сравнивать и при необходимости справочные использовать при решении материалы и вычислительные практических задач числовые устройства4 соотносить реальные значения реальных величин, величины, характеристики объектов конкретные числовые окружающего мира с их конкретными характеристики объектов числовыми значениями; использовать окружающего мира. методы округления и прикидки при решении практических задач повседневной жизни. Уравнения и Свободно оперировать Достижение результатов раздела понятиями: уравнение, неравенство, неравенства II; определять тип и выбирать равносильные уравнения и метод решения показательных и неравенства. логарифмических уравнений и Решать рациональные, неравенств, иррациональных показательные, логарифмические уравнений и неравенств, уравнения и неравенства. Решение тригонометрических уравнений и иррациональных уравнений. неравенств, их систем; Основные приемы решения систем решать системы линейных уравнений: подстановка, уравнений. алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной. Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение координатной на плоскости множества решений уравнений и неравенств с двумя переменными и их систем. Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

Функции

Владеть понятиями: зависимость величин, функция, аргумент значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее наименьшее значение функции на промежутке, числовом периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач; адеть понятием степенная функция; уметь строить ee график И свойства применять степенной функции при решении задач; лалеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач; владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач; понятиями владеть тригонометрические функции; строить ИΧ графики уметь свойства применять тригонометрических функций при решении задач; владеть понятием обратная функция; применять это понятие при решении задач; применять при решении задач свойства функций: четность, периодичность, ограниченность; решении применять при задач преобразования графиков функций; владеть понятиями числовая последовательность. арифметическая и геометрическая прогрессия;

применять при решении задач

И

признаки

свойства

арифметической

Достижение результатов раздела II; владеть понятием асимптоты и уметь его применять при решении задач; применять методы решения простейших дифференциальных

уравнений первого и второго порядков

и геометрической прогрессий.

В повседневной жизни и при изучении других учебных предметов: определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.); интерпретировать свойства в контексте конкретной практической ситуации;. определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Элементы математического анализа

Владеть понятием бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач; применять для решения задач теорию пределов; владеть понятиями бесконечно большие и бесконечно малые числовые последовательности и уметь сравнивать бесконечно большие и бесконечно малые последовательности; владеть понятиями: производная функции в точке, производная функции; вычислять производные элементарных функций и их комбинаций; исследовать функции на монотонность и экстремумы; строить графики и применять к решению задач, в том числе с параметром; владеть понятием касательная к графику функции и уметь применять его при решении задач; владеть понятиями первообразная функция, определенный интеграл;

Достижение результатов раздела II; свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной; свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость; оперировать понятием первообразной функции для решения задач; овладеть основными сведениями об интеграле Ньютона–Лейбница и его простейших применениях; оперировать в стандартных ситуациях производными высших порядков; уметь применять при решении задач свойства непрерывных функций; уметь применять при решении задач теоремы Вейерштрасса; уметь выполнять приближенные вычисления (методы решения уравнений, вычисления определенного интеграла); уметь применять приложение производной и определенного интеграла к решению задач естествознания;

владеть понятиями вторая

применять теорему Ньютона— Лейбница и ее следствия для решения залач.

В повседневной жизни и при изучении других учебных предметов:

решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов; интерпретировать полученные результаты

производная, выпуклость графика функции и уметь исследовать функцию на выпуклость

Статистика и теория вероятностей, логика и комбинаторика

Оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность И выборкой из нее: оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов; владеть основными понятиями комбинаторики уметь ИХ применять при решении задач; иметь представление об основах теории вероятностей; табличное графическое И представление данных. числовые характеристики рядов данных. Поочередный одновременный выбор нескольких элементов из конечного множества. Формула числа перестановок, сочетаний, размещений. Решение комбинаторных залач. Формула Бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев и вероятность несовместимых событий, суммы вероятность противоположного события. Понятие и независимость событий. Вероятность и статическая частота наступления события. Решение практических задач с применением вероятностных

методов.

Достижение результатов раздела II; иметь представление о центральной предельной теореме; иметь представление о выборочном коэффициенте корреляции и линейной регрессии; иметь представление о

иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и ее уровне значимости;

иметь представление о связи эмпирических и теоретических распределений;

иметь представление о кодировании, двоичной записи, двоичном дереве; владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;

иметь представление о деревьях и уметь применять при решении задач; владеть понятием связность и уметь применять компоненты связности при решении задач;

уметь осуществлять пути по ребрам, обходы ребер и вершин графа; иметь представление об эйлеровом и гамильтоновом пути, иметь

	В повседневной жизни и при изучении других предметов: вычислять или оценивать вероятности событий в реальной жизни; выбирать методы подходящего представления и обработки данных	представление о трудности задачи нахождения гамильтонова пути; владеть понятиями конечные и счетные множества и уметь их применять при решении задач; уметь применять метод математической индукции; уметь применять принцип Дирихле при решении задач
Текстовые задачи	Решать разные задачи повышенной трудности; анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы; строить модель решения задачи, проводить доказательные рассуждения при решении задачи; решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата; анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту; переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы. повседневной жизни и при изучении других предметов: решать практические задачи и задачи из других предметов	Достижение результатов раздела II

Геометрия

Владеть геометрическими понятиями при решении задач и проведении математических рассуждений; самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям; исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах; решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует

Иметь представление об аксиоматическом методе; владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач; уметь применять для решения задач свойства плоских и двугранных углов, трехгранного угла, теоремы косинусов и синусов для трехгранного угла; владеть понятием перпендикулярное

сечение призмы и уметь применять его при решении задач; иметь представление о двойственности правильных многогранников; владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций; иметь представление о развертке

явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач; уметь формулировать и доказывать геометрические утверждения; владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр; иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач; уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов; иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними; применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач; уметь применять параллельное проектирование для изображения фигур; уметь применять перпендикулярности прямой и плоскости при решении залач: владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач; владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач; владеть понятием угол между прямой и плоскостью и уметь применять его при решении задач; владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач; владеть понятиями призма, параллелепипед и применять свойства параллелепипеда при решении задач;

владеть понятием прямоугольный

многогранника и кратчайшем пути на поверхности многогранника; иметь представление о конических сечениях: иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач: применять при решении задач формулу расстояния от точки до плоскости; владеть разными способами задания прямой уравнениями и уметь применять при решении задач; применять при решении задач и доказательстве теорем векторный метод и метод координат; иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач; применять теоремы об отношениях объемов при решении задач; применять интеграл для вычисления объемов и поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя; иметь представление о движениях в пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач; иметь представление о площади ортогональной проекции; иметь представление о трехгранном и многогранном угле и применять свойства плоских углов многогранного угла при решении задач;

уметь решать задачи на плоскости методами стереометрии; уметь применять формулы объемов при решении задач

преобразовании подобия, гомотетии и

уметь применять их при решении

иметь представления о

задач:

параллелепипед и применять его при решении задач; владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач; иметь представление о теореме Эйлера, правильных многогранниках; владеть понятием площади поверхностей многогранников и уметь применять его при решении задач; владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач; владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач; иметь представления о вписанных и описанных сферах и уметь применять их при решении задач; владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач; иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач; иметь представление о площади сферы и уметь применять его при решении задач; уметь решать задачи на комбинации многогранников и тел вращения; иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур. В повседневной жизни и при изучении других предметов: составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат

Векторы и координаты в пространстве Владеть понятиями векторы и их координаты; уметь выполнять операции над векторами; использовать скалярное произведение векторов при решении задач;

Достижение результатов раздела II; находить объем параллелепипеда и тетраэдра, заданных координатами своих вершин; задавать прямую в пространстве; находить расстояние от точки до

История математики	формулу расстояния между точками, уравнение сферы при решении задач; применять векторы и метод координат в пространстве при решении задач Иметь представление о вкладе выдающихся математиков в развитие науки; понимать роль математики в развитии России	плоскости в системе координат; находить расстояние между скрещивающимися прямыми, заданными в системе координат Достижение результатов раздела II
Методы математики	В данной программе преобладающими методами обучения являются: объяснительноиллюстративный и репродуктивный, частично-поисковый. На уроках используются элементы следующих технологий: личностноориентированное обучение, обучение с применением ИКТ, педагогика сотрудничества. проблемное обучение, уровневая дифференциация, здоровьесберегающие технологии.	Достижение результатов раздела II; применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики)

2. СОДЕРЖАНИЕ ПРОГРАММЫ

В соответствии с принятой Концепцией развития математического образования в Российской Федерации, математическое образование решает, в частности, следующие ключевые задачи:

- «предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе»;
- «обеспечивать необходимое стране число выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики, математические исследования, работу в сфере информационных технологий и др.»;
- «в основном общем и среднем общем образовании необходимо предусмотреть подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования».

Соответственно, выделяются три направления требований к результатам математического образования:

- 1) практико-ориентированное математическое образование (математика для жизни);
- 2) математика для использования в профессии;

3) творческое направление, на которое нацелены те обучающиеся, которые планируют заниматься творческой и исследовательской работой в области математики, физики, экономики и других областях.

Базовый уровень

Алгебра и начала анализа

1. Повторение курса алгебры за 7-9 классы)

Алгебраические выражения. Линейные уравнения и системы уравнений. Числовые неравенства и неравенства и с одной переменной первой степени. Квадратные корни. Квадратные уравнения и неравенства. Свойства и графики функций.

Основная цель — обобщить и систематизировать знания по основным темам алгебры за 7-9 кл.

2. Степень с действительным показателем)

Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с натуральным и действительным показателями.

Основная цель — обобщить и систематизировать знания о действительных числах; сформировать понятие степени с действительным показателем; научить применять определения арифметического корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений.

Необходимость расширения множества натуральных чисел до действительных мотивируется возможностью выполнять действия, обратные сложению, умножению и возведению в степень, а значит, возможностью решать уравнения x + a = b, ax = b,

xa = b.

Рассмотренный в начале темы способ обращения бесконечной периодической десятичной дроби в обыкновенную обосновывается свойствами сходящихся числовых рядов, в частности, нахождением суммы бесконечно убывающей геометрической прогрессии.

Действия над иррациональными числами строго не определяются, а заменяются действиями над их приближенными значениями — рациональными числами.

В связи с рассмотрением последовательных рациональных приближений иррационального числа, а затем и степени с иррациональным показателем на интуитивном уровне вводится понятие предела последовательности.

Арифметический корень натуральной степени n>2 из неотрицательного числа и его свойства излагаются традиционно. Учащиеся должны уметь вычислять значения корня с помощью определения и свойств и выполнять преобразования выражений, содержащих корни.

Степень с иррациональным показателем поясняется на конкретном примере: число 3^2рассматривается как последовательность рациональных приближений 31,4, 31,41, Здесь же формулируются и доказываются свойства степени с действительным показателем, которые будут использоваться при решении уравнений, неравенств, исследовании функций.

3. Степенная функция

Степенная функция, ее свойства и график. Взаимно обратные функции. Сложные функции. Дробно-линейная функция. Равносильные уравнения и неравенства. Иррациональные уравнения. *Иррациональные неравенства*.

Основная цель — обобщить и систематизировать известные из курса алгебры основной школы свойства функций; изучить свойства степенных функций и научить применять их при решении уравнений и неравенств; сформировать понятие

равносильности уравнений, неравенств, систем уравнений и неравенств.

Рассмотрение свойств степенных функций и их графиков проводится поэтапно, в зависимости от того, каким числом является показатель: 1) четным натуральным числом; 2) нечетным натуральным числом; 3) числом, противоположным четному натуральному числу; 4) числом, противоположным нечетному натуральному числу.

Обоснования свойств степенной функции не проводятся, они следуют из свойств степени с действительным показателем. Например, возрастание функции y = xp на промежутке x > 0, где p — положительное нецелое число, следует из свойства:

«Если 0 < x1 < x2, p>0, то y(x1) < y(x2). На примере степенных функций учащиеся знакомятся с понятием ограниченной функции.

Рассматриваются функции, называемые взаимно обратными. Важно обратить внимание на то, что не всякая функция имеет обратную.

Знакомство со сложными и дробно-линейными функциями начинается сразу после изучения взаимно обратных функций. Вводятся разные термины для обозначения сложной функции (суперпозиция, композиция), но употребляется лишь один. Этот материал в классах базового уровня изучается лишь в ознакомительном плане.

Определения равносильности уравнений, неравенств и систем уравнений и свойств равносильности дается в связи с предстоящим изучением иррациональных уравнений, неравенств и систем иррациональных уравнений.

Основным методом решения иррациональных уравнений является возведение обеих частей уравнения в степень с целью перехода к рациональному уравнениюследствию данного.

С помощью графиков решается вопрос о наличии корней и их числе, а также о нахождении приближенных корней, если аналитически решить уравнение трудно.

Изучение иррациональных неравенств не является обязательным для всех учащихся. При их изучении на базовом уровне основным способом решения является сведение неравенства к системе рациональных неравенств, равносильной данному.

4. Показательная функция

Показательная функция, ее свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

Основная цель — изучить свойства показательной функции; научить решать показательные уравнения и неравенства, системы показательных уравнений.

Свойства показательной функции $y=a^x$ полностью следуют из свойств степени с действительным показателем. Например, возрастание функции $y-a^x$, еслиa>1, следует из свойства степени: «Если $x_x < x_2$, то $a^{Xl} < a^{Xc}$ при a>1».

Решение большинства показательных уравнений и неравенств сводится к решению простейших.

Так как в ходе решения предлагаемых в этой теме показательных уравнений равносильность не нарушается, то проверка найденных корней необязательна. Здесь системы уравнений и неравенств решаются с помощью равносильных преобразований: подстановкой, сложением или умножением, заменой переменных и т. д.

5. Логарифмическая функция

Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, ее свойства и график. Логарифмические уравнения. Логарифмические неравенства.

Основная цель — сформировать понятие логарифма числа; научить применять свойства логарифмов при решении уравнений; изучить свойства логарифмической функции и научить применять ее свойства при решении логарифмических уравнений и

неравенств.

До этой темы в курсе алгебры изучались такие функции, вычисление значений которых сводилось к четырем арифметическим действиям и возведению в степень. Для вычисления значений логарифмической функции нужно уметь находить логарифмы чисел, т. е. выполнять новое для учащихся действие — логарифмирование.

При знакомстве с логарифмами чисел и их свойствами полезны подробные и наглядные объяснения даже в профильных классах.

Доказательство свойств логарифма опирается на его определение. На практике рассматриваются логарифмы по различным основаниям, в частности по основанию 10 (десятичный логарифм) и по основанию е (натуральный логарифм), отсюда возникает необходимость формулы перехода от логарифма по одному основанию к логарифму по другому основанию. Так как на инженерном микрокалькуляторе есть клавиши lg и In, то для вычисления логарифма по основаниям, отличным от 10 и е, нужно применить формулу перехода.

Свойства логарифмической функции активно используются при решении логарифмических уравнений и неравенств.

Изучение свойств логарифмической функции проходит совместно с решением уравнений и неравенств.

При решении логарифмических уравнений и неравенств выполняются различные их преобразования. При этом часто нарушается равносильность. Поэтому при решении логарифмических уравнений необходимо либо делать проверку найденных корней, либо строго следить за выполненными преобразованиями, выявляя полученные уравнения-следствия и обосновывая каждый этап преобразования. При решении логарифмических неравенств нужно следить за тем, чтобы равносильность не нарушалась, так как проверку решения неравенства осуществить сложно, а в ряде случаев невозможно.

6. Тригонометрические формулы

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов а и -а. Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов. Произведение синусов и косинусов.

Основная цель — сформировать понятия синуса, косинуса, тангенса, котангенса числа; научить применять формулы тригонометрии для вычисления значений тригонометрических функций и выполнения преобразований тригонометрических выражений; научить решать простейшие тригонометрические уравнения $\sin x = a$, $\cos x = a$ при a = 1, - 1, 0.

Рассматривая определения синуса и косинуса действительного числа a, естественно решить самые простые уравнения, в которых требуется найти число a, если синус или косинус его известен, например уравнения $\sin a = 0$, $\cos a = 1$ и т. п. Поскольку для обозначения неизвестного по традиции используется буква x, то эти уравнения записывают как обычно: $\sin x = 0$, $\cos x = 1$ и т. п. Решения этих уравнений находятся с помощью единичной окружности.

При изучении степеней чисел рассматривались их свойства $a^{p+q} = a^p a^q$, $a^p \sim^q = a^p : a^q$. Подобные свойства справедливы и для синуса, косинуса и тангенса. Эти свойства называют формулами сложения. Практически они выражают зависимость между координатами суммы или разности двух чисел а и P через координаты чисел а и (3. Формулы сложения доказываются для косинуса суммы или разности, все остальные формулы

сложения получаются как следствия.

Формулы сложения являются основными формулами тригонометрии, так как все другие можно получить как следствия: формулы двойного и половинного углов (для классов базового уровня не являются обязательными), формулы приведения, преобразования суммы и разности в произведение. Из формул сложения выводятся и формулы замены произведения синусов и косинусов их суммой, что применяется при решении уравнений.

7. Тригонометрические уравнения

Уравнения $\cos x = a$, $\sin x = a$, tgx = a. Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные и линейные уравнения. Методы замены неизвестного и разложения на множители. Метод оценки левой и правой частей тригонометрического уравнения. Системы тригонометрических уравнений. Тригонометрические неравенства.

Основная цель — сформировать понятия арксинуса, арккосинуса, арктангенса числа; научить решать тригонометрические уравнения и системы тригонометрических уравнений, используя различные приемы решения; ознакомить с приемами решения тригонометрических неравенств.

Как и при решении алгебраических, показательных и логарифмических уравнений, решение тригонометрических уравнений путем различных преобразований сводится к решению простейших: $\cos x = a$, $\sin x = a$, tgx = a.

Рассмотрение простейших уравнений начинается с уравнения $\cos x = a$, так как формула его корней проще, чем формула корней уравнения $\sin x = a$ (в их записи часто используется необычный для учащихся указатель знака $(-1)^n$). Решение более сложных тригонометрических уравнений, когда выполняются алгебраические и тригонометрические преобразования, сводится к решению простейших.

Рассматриваются следующие типы тригонометрических уравнений: линейные относительно sinx, cosx или tgx; сводящиеся к квадратным и другим алгебраическим уравнениям после замены неизвестного; сводящиеся к простейшим тригонометрическим уравнениям после разложения на множители.

Рассматриваются простейшие т*ригонометрические неравенства, которые* решаются с помощью единичной окружности.

8. Повторение

Степень с действительным показателем. Иррациональные уравнения. Показательные уравнения и неравенства. Логарифмические уравнения и неравенства. Решение задач повышенной трудности.

Основная цель — обобщить и систематизировать знания по основным темам алгебры и начал математического анализа за 10 класс.

11 класс

1. Тригонометрические функции

Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функции у=cosx и её график. Свойства функции у=sinx и её график. Свойства функции у=tgx и её график. Обратные тригонометрические функции.

Основная цель — изучить свойства тригонометрических функций, научить учащихся применять эти свойства при решении уравнений и неравенств; научить строить графики тригонометрических функций, используя различные приемы построения графиков.

Среди тригонометрических формул следует особо выделить те формулы, которые непосредственно относятся к исследованию тригонометрических функций и построению их графиков. Так, формулы $\sin(-x)$ =- $\sin x$ и $\cos(-x)$ = $\cos x$ выражают свойства нечетности и четности функций y= $\sin x$ и y= $\cos x$ соответственно.

Построение графиков тригонометрических функций проводится с использованием их свойств и начинается с построения графика функции у=cosx.С помощью графиков тригонометрических функций решаются простейшие тригонометрические уравнения и неравенства.

Учебная цель — введение понятия тригонометрической функции, формирование умений находить область определения и множество значения тригонометрических функций; обучение исследованию тригонометрических функций на четность и нечетность и нахождению периода функции; изучение свойств функции $y = \cos x$, обучение построению графика функции и применению свойств функции при решении уравнений и неравенств; изучение свойств функции $y = \sin x$, обучение построению графика функции и применению свойств функции при решении уравнений и неравенств; ознакомление со свойствами функций $y = \tan x$, изучение свойств функции $y = \cos x$, обучение построению графиков функций и применению свойств функций при решении уравнений и неравенств;

2. Производная и её геометрический смысл

Предел последовательности. Непрерывность функции. Определение производной. Правило дифференцирования. Производная степенной функции. Производные элементарных функций. Геометрический смысл производной.

Основная цель — показать учащимся целесообразность изучения производной и в дальнейшем первообразной (интеграла), так как это необходимо при решении многих практических задач, связанных с исследованием физических явлений, вычислением площадей криволинейных фигур и объемов тел с производными границами, с построением графиков функций. Прежде всего, следует показать, что функции, графиками которых являются кривые, описывают важные физические и технические процессы.

Усвоение геометрического смысла производной и написание уравнения касательной к графику функции в заданной точке является обязательным для всех учащихся.

Овладение правилами дифференцирования суммы, произведения и частного двух функций, вынесения постоянного множителя за знак производной; знакомство с дифференцированием сложных функций и *правилам нахождения производной обратной функции*; обучение использованию формулы производной степенной функции $f(x) = x^p$ для любого действительного p; формирование умений находить производные элементарных функций; знакомство с геометрическим смыслом производной обучение составлению уравнений касательной к графику функции в заданной точке.

3. Применение производной к исследованию функций

Возрастание и убывание функции. Экстремумы функции. Наибольшее и наименьшее значения функции. *Производная второго порядка, выпуклость и точки перегиба*. Построение графиков функций.

Основная цель— является демонстрация возможностей производной в исследовании свойств функций и построении их графиков и применение производной к решению прикладных задач на оптимизацию, дополнительно –применение теоремы Лагранжа для обоснования достаточного условия возрастания и убывания функции, теоремы Ферма и её геометрическому смыслу, а также достаточному условию экстремума, знакомство с

понятием асимптоты, производной второго порядка и её приложение к выявлению интегралов выпуклости функции, знакомство с различными прикладными программами, позволяющими построить график функции и исследовать его с помощью компьютера.

Учебная цель — обучение применению достаточных условий возрастания и убывания к нахождению промежутков монотонности функции; знакомство с понятиями точек экстремума функции, стационарных и критических точек, с необходимыми и достаточными условиями экстремума функции; обучение нахождению точек экстремума функции; обучение нахождению наибольшего и наименьшего значений функции с помощью производной; знакомство с понятием второй производной функции и её физическим смыслом; с применением второй производной для нахождения интегралов выпуклости и точек перегиба функции; формирование умения строить графики функций — многочленов с помощью первой производной, с привлечением аппарата второй производной.

4. Первообразная и интеграл

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычисление. Применение интегралов для решения физических задач.

Основная цель ознакомление учащихся с понятием первообразной и обучение нахождению площадей криволинейных трапеций. Площадь криволинейной трапеции определяется как предел интегральных сумм. Большое внимание уделяется приложениям интегрального исчисления к физическим и геометрическим задачам. Связь между первообразной и площадью криволинейной трапеции устанавливается формулой Ньютона-Лейбница. Далее возникает определенный интеграл как предел интегральной суммы; при этом формула Ньютона-Лейбница также оказывается справедливой. Таким образом, эта формула является главной: с её помощью вычисляются определенные интегралы и находятся площади криволинейных трапеций.

Учебная цель — ознакомление с понятием первообразной, обучение нахождению первообразной для степеней и тригонометрических функций; ознакомление с понятием интегрирования и обучение применению правил интегрирования при нахождении первообразных; формирование понятия криволинейной трапеции, ознакомление с понятием определенного интеграла, обучение вычислению площади криволинейной трапеции в простейших случаях; ознакомить учащихся с применением интегралов для физических задач, научить решать задачи на движение с применением интегралов.

5. Комбинаторика

Правило произведения. Размещения с повторениями. Перестановки. Размещения без повторений. Сочетания без повторений и бином Ньютона.

Основная цель — ознакомление с основными формулами комбинаторики и их применением при решении задач, развивать комбинаторное мышление учащихся, ознакомить с теорией соединений, обосновать формулу бинома Ньютона. Основной при выводе формул числа перестановок и размещений является правило умножения, понимание которого формируется при решении различных прикладных задач. Свойства числа сочетаний доказываются и затем применяются при организации и исследовании треугольника Паскаля.

Учебная цель – овладение одним из основных средств подсчета числа различных соединений, знакомство учащихся с размещениями с повторениями. Знакомство с первым видом соединений – перестановками; демонстрация применения правила произведения при выводе формулы числа перестановок из п элементов. Введение понятия размещения

без повторений из м элементов по п; создание математической модели для решения комбинаторных задач, сводимых к подсчету числа размещений; знакомство с сочетаниями и их свойствами; решение комбинаторных задач, сводящихся к подсчету числа сочетаний из м элементов по п; обоснованное конструирование треугольника Паскаля; обучение возведению двучлена в натуральную степень с использованием формулы Ньютона. Составление порядочных множеств (образование перестановок); составление порядочных подмножеств данного множества (образование размещений);доказательство справедливости формул для подсчета числа перестановок с повторениями и числа сочетаний с повторениями, усвоение применения метода математической индукции.

6. Элементы теории вероятностей

Вероятность события. Сложение вероятностей. Вероятность произведения независимых событий.

Основная цель — сформировать понятие вероятности случайного независимого события. Исследование простейших взаимосвязей между различными событиями, а также нахождению вероятностей видов событий через вероятности других событий. Классическое определение вероятности события с равновозможными элементарными исходами формируется строго, и на его основе (с использованием знаний комбинаторики) решается большинство задач. Понятие геометрической вероятности и статистической вероятности вводились на интуитивном уровне. При изложении материала данного раздела подчеркивается прикладное значение теории вероятностей в различных областях знаний и практической деятельности человека.

Учебная цель — знакомство с различными видами событий, комбинациями событий; введение понятия вероятности события и обучение нахождению вероятности случайного события с очевидными благоприятствующими исходами; знакомство с теоремой о вероятности суммы двух несовместных событий и её применением, в частности при нахождении вероятности противоположного события; и с теоремой о вероятности суммы двух производных событий; интуитивное введение понятия независимых событий; обучение нахождению вероятности произведения двух независимых событий.

6. Уравнения и неравенства с двумя переменными

Линейные уравнения и неравенства с двумя переменными. Нелинейные уравнения и неравенства с двумя переменными.

Основная цель — обобщить основные приемы решения уравнений и систем уравнений, научить учащихся изображать на координатной плоскости множество решений линейных неравенств и систем линейных неравенств с двумя переменными, сформировать навыки решения задач с параметрами, показать применение математических методов для решения содержательных задач из различных областей науки и практики.

Учебная цель — научить учащихся изображать на координатной плоскости множество решений линейных неравенств и систем линейных неравенств с двумя переменными.

8. Итоговое повторение курса алгебры и начал

математического анализа

Выражения с корнями. Степенные выражения. Иррациональные выражения. Логарифмические выражения. Тригонометрические преобразования выражений. Иррациональные уравнения. Показательные уравнения. Логарифмические уравнения. Показательные и логарифмические неравенства. Тригонометрические уравнения. Дробнорациональные неравенства. Область определения и область значения функции. Чётные и нечётные функции, периодичность функций. Нули функции. Промежутки знакопостоянства, возрастание и убывание функции. Производная и её применение. Первообразная и её применение.

Уроки итогового повторения имеют своей целью не только восстановление в памяти учащихся основного материала, но и обобщение, уточнение, систематизацию знаний по алгебре и началам математического анализа за курс средней школы.

Геометрия

- Повторение. Решение задач с использованием свойств фигур на плоскости. Решение задач на доказательство и построение контрпримеров. Применение простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисления длин и площадей. *Решение задач с помощью векторов и координат*.
- Основные понятия геометрии в пространстве. Аксиомы стереометрии и следствия из них. *Понятие об аксиоматическом методе*.
- Построение сечений многогранников методом следов. Центральное проектирование. Построение сечений многогранников методом проекций.
- Скрещивающиеся прямые в пространстве. Угол между ними. Методы нахождения расстояний между скрещивающимися прямыми.
- Теоремы о параллельности прямых и плоскостей в пространстве. Параллельное проектирование и изображение фигур. *Геометрические места точек в пространстве*.
- Перпендикулярность прямой и плоскости. Ортогональное проектирование. Наклонные и проекции. Теорема о трех перпендикулярах.
- Тетраэдр.
 - Достраивание тетраэдра до параллелепипеда.
- Расстояния между фигурами в пространстве. Общий перпендикуляр двух скрещивающихся прямых.
- Углы в пространстве. Перпендикулярные плоскости. Площадь ортогональной проекции. Перпендикулярное сечение призмы.
- Виды многогранников. Развертки многогранника. Кратчайшие пути на поверхности многогранника.
- Теорема Эйлера. Правильные многогранники. Двойственность правильных многогранников.
- Призма. Параллелепипед. Свойства параллелепипеда. Прямоугольный параллелепипед. Наклонные призмы.
- Пирамида. Виды пирамид. Элементы правильной пирамиды. Пирамиды с равнонаклоненными ребрами и гранями, их основные свойства.
 - Площади поверхностей многогранников.
- Тела вращения: цилиндр, конус, шар и сфера. Сечения цилиндра, конуса и шара. Шаровой сегмент, шаровой слой, шаровой сектор (конус).
 - Усеченная пирамида и усеченный конус.
 - Элементы сферической геометрии. Конические сечения.
- Касательные прямые и плоскости. Вписанные и описанные сферы. *Касающиеся сферы. Комбинации тел врашения*.
 - Векторы и координаты. Сумма векторов, умножение вектора на число. Угол между

векторами. Скалярное произведение.

- Уравнение плоскости. Формула расстояния между точками. Уравнение сферы. Формула расстояния от точки до плоскости. Способы задания прямой уравнениями.
- Решение задач и доказательство теорем с помощью векторов и методом координат. Элементы геометрии масс.
- Понятие объема. Объемы многогранников. Объемы тел вращения. Аксиомы объема. Вывод формул объемов прямоугольного параллелепипеда, призмы и пирамиды. Формулы для нахождения объема тетраэдра. Теоремы об отношениях объемов.
- Приложения интеграла к вычислению объемов и поверхностей тел вращения. Площадь сферического пояса. Объем шарового слоя. Применение объемов при решении задач.
 - Площадь сферы.
 - Развертка цилиндра и конуса. Площадь поверхности цилиндра и конуса.
 - Комбинации многогранников и тел вращения.
- Подобие в пространстве. Отношение объемов и площадей поверхностей подобных фигур.
- Движения в пространстве: параллельный перенос, симметрия относительно плоскости, центральная симметрия, поворот относительно прямой.

Тематическое планирование

10 класс (базовый уровень),140 ч. в год (4 часа в неделю)

№п/п	Тема	Количество часов
1.	Степень с действительным показателем	11
2.	Введение в стереометрию	3
3.	Параллельность прямых	16
4.	Степенная функция	13
5.	Перпендикулярность прямых	17
6.	Показательная функция	10
7.	Многогранники	12
8.	Логарифмическая функция	15
9.	Тригонометрические формулы	20
10.	Тригонометрические уравнения	15
11.	Повторение	4
12.	Степень с действительным показателем	11

Тематическое планирование

11класс (базовый уровень), 136 ч. в год (4 часа в неделю)

№п/п	Тема	Количество
		часов
1.	Тригонометрические функции	13
2.	Векторы в пространстве	6
3.	Метод координат в пространстве	11
4.	Производная и ее геометрический смысл	14
5.	Применение производной к исследованию функции	12
6.	Цилиндр, конус, шар	13
7.	Первообразная и интеграл	8
9.	Комбинаторика	8
10.	Элементы теории вероятностей и статистика	6
11.	Объемы тел	15

12.	Уравнения и неравенства с двумя переменными	6
13.	Заключительное повторение по алгебре и началам анализа	18
14.	Заключительное повторение по геометрии	6

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 603332450510203670830559428146817986133868575973

Владелец Миронов Денис Эдуардович Действителен С 28.04.2021 по 28.04.2022